Analysis Of The Inhibitory Ability Of Spike Attachment Of The Delta Variant Of Sars Cov-2 With Ace2 By The Active Compound In Turmeric (Curcuma longa L.) In Silico Analisis Kemampuan Penghambatan Penempelan Spike Sars Cov-2 Varian Delta Dengan Ace2 Oleh Senyawa Aktif Pada Kunyit (Curcuma longa L.) Secara In Silico

Main Article Content

Pratasyah Liyaajul
Miftahul Mushlih
Chylen Setiyo Rini
Jamilatur Rohmah

Abstract

Turmeric (Curcuma longa L.) is an herbal plant that has many benefits as a treatment, including during the COVID-19 pandemic, one of the mechanisms of inhibition of SARS CoV-2 is to inhibit the attachment of ACE2 with Spike.  The binding of the spike protein to the ACE2 receptor will produce conformational changes in the S protein, this study was conducted using an in silico method (computational analysis) which aims to determine the potential efficacy of Turmeric and its effectiveness in inhibiting the Delta variant of SARS CoV-2.  The active compound contained in Turmeric (Curcuma longa L. ) obtained from the KNApSAcK database To determine compounds that can have potential and have good effectiveness in inhibition of the Delta Variant of SARS CoV-2, an analysis was carried out by looking at the binding energy and conformation changes that occur at the sticky point in each compound. Three-dimensional structure of SARS CoV-2 Varian Delta downloaded from the Protein Data Bank with PDB code 7V8B.  Based on the analysis carried out, it was found that the compound (E)-nuciferoll has the lowest binding energy value of -1212.59 kcal / mol and is located at the initial attachment but cannot change the conformation, but from the sticky point of the compound (E)-nuciferol lies in the initial attachment of RBD-ACE2.

Article Details

How to Cite
Liyaajul, P., Mushlih, M., Rini, C. S., & Rohmah, J. (2023). Analysis Of The Inhibitory Ability Of Spike Attachment Of The Delta Variant Of Sars Cov-2 With Ace2 By The Active Compound In Turmeric (Curcuma longa L.) In Silico . Medicra (Journal of Medical Laboratory Science/Technology), 6(1), 19-24. https://doi.org/10.21070/medicra.v6i1.1703
Section
Articles

References

Araújo, C. A. C. and Leon, L. L. (2001). Biological Activities of Curcuma Longa L. Memorias Do Instituto Oswaldo Cruz. 96(5), 723–28. doi: 10.1590/S0074-02762001000500026.
Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME : a free web tool to evaluate pharmacokinetics, drug- likeness and medicinal chemistry friendliness of small molecules. Nature Publishing Group, October 2016, 1–13. https://doi.org/10.1038/srep42717
Hoffmann, M., Weber, H. K., Schroeder, S., Krüger, N., Herrler, J., Erichsen, S., Schiergens, T.S., Herrler, G., Wu, N. H., Nitsche, A., Müller, M.A., Drosten, C and Pöhlmann, S. (2020). SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 181(2), 271-280.e8. doi: 10.1016/j.cell.2020.02.052.
Khiyaaroh, Akhodza, and Atik Triratnawati. (2021). Jamu: Javanese Doping During the Covid-19 Pandemic. Indonesian Journal of Medical Anthropology, 2(2), 92–98. doi: 10.32734/ijma.v2i2.6385.
Mushlih, M., Aliviameita. A, Puspitasari, Firmansyah, N., Jamil, A. S. and Murosidah, P. L. (2022). Potential Molecules Against Covid-19 from Annona Muricata: an in-Silico Approach. Medical Technology and Public Health Journal, 6(1), 11–20. doi: 10.33086/mtphj.v6i1.3069
Pradani, T. C., Fatimawali, Manampiring, A. E., Kepel, B. J., Budiarso, F. D., and Bodhi, W. (2021). Molecular Docking Terhadap Senyawa Kurkumin Dan Arturmeron Pada Tumbuhan Kunyit (Curcuma Longa Linn.) Yang Berpotensi Menghambat Virus Corona. Jurnal E-Biomedik, 9(2), 208–14. doi: 10.35790/ebm.v9i2.31888
Syamsu, R. F., Nuryanti, S., and Jamal, M. F. (2021). Herbal Yang Berpotensi Sebagai Anti Virus Pada Covid-19. Molucca Medica, 14(April), 76–85. doi: 10.30598/molmed.2021.v14.i1.76.
Syamsudin, R. A. M. R., Perdana, F., and Mutiaz, F. C. (2019). Tanaman Temu Lawak (Curcuma Xanthorrhiza Roxb) Sebagai Obat Tradisional. Jurnal Ilmiah Farmako Bahari, 10(1), 52-65. doi: 10.52434/jfb.v10i1.648.
van Breemen, R. B., Muchiri, R. N., Bates, T. A., Weinstein, J. B., Leier, H. C., Farley, S., & Tafesse, F. G. (2022). Cannabinoids Block Cellular Entry of SARS-CoV-2 and the Emerging Variants. Journal of Natural Products, 85(1), 176–184. doi: 10.1021/acs.jnatprod.1c00946
Vicidomini, C., Roviello, V., and Roviello, G. N. (2021). In Silico Investigation on the Interaction of Chiral Phytochemicals from Opuntia Ficus-Indica with Sars-Cov-2 Mpro. Symmetry, 13(6), 1041. doi: 10.3390/sym13061041.
Walls, A. C., Park, Y. J., Tortorici, M. A., Wall, A., McGuire, A. T., and Veesler, D. (2020). Structure, Function and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. BioRxiv (January), 181(2), 281–292.e6 doi: 10.1101/2020.02.19.956581.
Wang, Q., Zhang, Y., Wu, L., Niu, S., Song, C., Zhang, Z., Lu, G., Qiao, C., Hu, Y., Yuen, K. Y., Wang, Q,. Zhou, H., Yan, J., and Qi, J. (2020). Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2. Cell, 181(4), 894-904.e9. doi: 10.1016/j.cell.2020.03.045
Yalcin, H. C., Sukumaran, V., Al-Ruweidi, M. K. A. A., and Shurbaji, S. (2021). Do Changes in Ace-2 Expression Affect Sars-Cov-2 Virulence and Related Complications: A Closer Look into Membrane-Bound and Soluble Forms. International Journal of Molecular Sciences, 22(13), 1-18. doi: 10.3390/ijms22136703.

DB Error: Unknown column 'Array' in 'where clause'