Potensi Kulit Mangga (Mangifera infica L.) Varietas Apel Secara Infusa Dan Maserasi Dalam Menghambat Bakteri Pseudomonas aeruginosa dan Propionibacterium acnes

by Vifin Putri Rahmawati

Submission date: 31-Jul-2021 08:02PM (UTC+0700)

Submission ID: 1626163648

File name: i Kulit Mangga Varietas Apel Secara Infusa dan Maserasi new.docx (58.34K)

Word count: 2483

Character count: 15072

The Potential of Mango (Mangifera infica L.) Peels of Apple Varieties By Infusion And Maceration In Inhibiting Pseudomonas aeruginosa And Propionibacterium acnes

Potensi Kulit Mangga (Mangifera infica L.) Varietas Apel Secara Infusa Dan Maserasi Dalam Menghambat Bakteri *Pseudomonas* aeruginosa dan *Propionibacterium* acnes

Plants have many chemical components. The use of natural ingredients as an alternative treatment in dealing with diseases, especially acne. One of them is mango (Mangifera indica L.) varieties of apples obtained at the Larangan Main Market in Sidoarjo. This study aims to determine the potential of infusion and maceration of mango skin varieties in inhibiting Pseudomonas aeruginosa and Propionibactrium acnes at various concentrations. This antibacterial potential test was carried out using the diffusion method of the wells. The antibacterial potential is characterized by the formation of a clear zone around the well called the inhibition zone. This study uses 10 concentrations namely 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100% and Clindamycin as positive control and aquades as negative control. Based on the results of the Two Way ANOVA test data obtained were not normally distributed, therefore a comparison test was performed using the Kruskal-Wallis test with a sign value (α <0.05). This showed that there were significant differences in the use of various concentrations. The maceration extract concentration of 100% is the best concentration to form a zone of inhibition against Pseudomonas aeruginosa of 17.9 mm and Propionibactrium acnes of 13.2 mm. The results of the infusion extract concentration did not form inhibitory zones in both of Pseudomonas aeruginosa and Propionibactrium acnes.

Keywords: antibacterial, mango (Mangifera indica L.), Pseudomonas aeruginosa, Propionibacterium acnes

Tanaman memiliki banyak komponen kimia. Pemanfaatan bahan alam sebagai alternatif pengobatan dalam mengatasi penyakit khususnya jerawat. Salah satu diantaranya yaitu mangga (Mangifera indica L.) varietas apel yang diperoleh di pasar induk Larangan Sidoarjo. Penelitian ini bertujuan mengetahui potensi kulit mangga varietas apel secara infusa dan maserasi dalam menghambat bakteri Pseudomonas aeruginosa dan Propionibactrium acnes pada berbagai konsentrasi. Uji potensi antibakteri ini dilakukan dengan metode difusi sumuran. Potensi antibakteri ditandai dengan terbentuknya zona bening disekitar sumuran yang disebut zona hambat. Penelitian ini menggunakan 10 konsentrasi yakni 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% dan 100% serta Klindamisin sebagai kontrol positif dan aquades sebagai kontrol negatif. Berdasarkan hasil uji Two Way ANOVA data diperoleh tidak terdistribusi nomal oleh karena itu dilakukan uji perbandingan menggunakan uji Kruskal-Wallis dengan nilai sign (α < 0,05) hal ini menunjukkan terdapat perbedaan yang pata pada penggunaan berbagai konsentrasi. Konsentrasi ekstrak maserasi 100% merupakan konsentrasi paling baik membentuk zona hambat terhadap bakteri Pseudomonas aeruginosa sebesar 17,9 mm dan pada bakteri Propionibactrium acnes sebesar 13,2 mm. Hasil konsentrasi ekstrak infusa tidak membentuk zona hambat baik pada bakteri Pseudomonas aeruginosa maupun Propionibactrium acnes.

Kata Kunci: antibakteri, mangga (Mangifera indica L.), Pseudomonas aeruginosa, Propionibacterium acnes

PENDAHULUAN

Jerawat (*Acne vulgaris*) merupakan penyakit kulit dengan peradangan kronis pada pori-pori kulit yang ditandai dengan terbentuknya pustula, papula, nodul dan kista Wasitaatmadja (2011). Jerawat disebabkan oleh faktor genetik, faktor menstruasi, jenis kulit, stress emosional, keaktifan kelenjar *sebasea* dan infeksi bakteri. Beberapa bakteri penyebab jerawat diantaranya *Propionibacterium acnes, Staphylococcus epidermis, Staphylococcus aureus* Fissy et al. (2014).

Pengobatan jerawat dilakukan dengan salah satu menurunkan jumlah bakteri penyebab jerawat sehingga dapat memperbaiki struktur epidermis yang abnormal. Populasi bakteri *Propionibacterium acnes* dapat atasi dengan penggunaan antibiotik. Seperti Eritromisin, Klindamisin, dan Benzoil peroxidase Wyatt et al. (2001). Akan tetapi, banyak antibiotik sintetik jika penggunaan dalam jangka panjang dapat menyebabkan resistensi dan efek samping seperti iritasi, kerusakan organ Ismarani et al. (2014). Oleh karena itu diperlukan alternatif dalam mengatasi masalah ini dengan memanfaatkan tanaman obat.

Salah satu tanaman yang berpotensi sebagai antibakteri yaitu tanaman mangga (Mangifera indica L.) Mangga tergolong buah-buahan kaya akan vitamin, mangiferin, antioksidan termasuk senyawa fenolik dan karatenoid. Sebagian besar masyarakat Indonesia memanfaatkan mangga hanya pada daging buah saja, sedangkan bagian kulit buah mangga biasanya dibuang sehingga berdampak pada lingkungan dan dapat meningkatkan jumlah limbah domestik yakni sekitar 12-15% yang terdiri dari limbah organic Shandu and Lim (2008).

Kulit buah mangga mengandung senyawa aktif alami lebih tinggi bila dibandingkan dengan daging buah, hal ini dikarenakan untuk melindungi bagian dalam dari serangan luar dan mikroorganisme yang dapat merusaknya Jeong et al. (2004). Untuk memperoleh senyawa aktif tersebut dapat menggunakan teknik ekstraksi. Berdasarkan penelitian Munawwarah et al. (2017) menyatakan bahwa ekstrak ethanol biji mangga (Mangifera Indica L.) konsentrasi 60% memiliki sifat antibakteri lebih kuat terhadap bakteri Propionibacterium acnes dengan rata-rata zona hambat 13,67 mm. Diketahui bahwa bagian biji mangga mengandung senyawa antibakteri, oleh karena itu untuk mengetahui potensi mangga dari bagian yang berbeda, maka perlu dilakukan penelitian tentang potensi kulit mangga (Mangifera infica L.) varietas apel secara infusa dan maserasi dalam menghambat bakteri Pseudomonas aeruginosa Propionibacterium acnes.

METODE

Penelitian dilakukan dengan desain eksperimental laboratorik agar dapat mengetahui akibat yang akan ditimbulkan setelah dilakukannya suatu perlakuan pada sampel kulit mangga (*Mangifera indica* L.) terhadap bakteri

Pseudomonas aeruginosa dan Propionibacterium acnes. Sampel kulit mangga (Mangifera indica L.) berasal dari kecamatan pasar induk Larangan Sidoarjo secara quota sampling. Penelitian dilaksanakan di Laboratorium Bakteriologi Fakultas Ilmu Kesehatan Universitas Muhammadiyah Sidoarjo pada bulan Maret-Juli 2020. Uji fitokimia dan pemekatan hasil maserasi dilakukan di Laboratorium Kimia Organik Universitas Negeri Surabaya untuk melakukan. Beberapa alat yang digunakan pada penelitian ini yaitu alat-alat gelas, timbangan analitik, inkubator (Memmert), autoklaf (Quart), mikropipet, jangka sorong, pinset dan bunsen. Bahan yang digunakan yaitu etanol 96%, aquades, kulit mangga var. apel, aluminium foil, bakteri P. aeruginosa, bakteri P. acnes, nutrient agar, pereaksi mayer (p.a., Merck), pereaksi wagner (p.a., Merck), pereaksi dragendorf (p.a., Merck), magnesium (p.a., Merck), asam klorida (p.a., Merck), pereaksi Libermann-Burchard, kloroform, asam sulfat pekat, natrium klorida, gelatin, dan besi III klorida (p.a., Merck).

4 Pembuatan simplisia dilakukan dengan menimbang sampel basah, kemudian dicuci dengan air bersih yang mengalir. Selanjutnya dilakukan pengeringan pada sampel yang bertujuan memisahkan sampel dengan bahan pengotor lain yang tidak diinginkan. Sampel kemudian ditimbang untuk mengetahui berat bersihnya. Lalu sampel dihaluskan menjadi serbuk.

Ekstrak secara maserasi dilakukan dengan cara simplisia kulit mangga sebanyak 700 gram lalu dimaserasi dalam 1.400 ml etanol 96% (1:2) selama 24 jam dan sesekali dilakukan pengadukan. Lalu dilakukan penyaringan. Ampas yang diperoleh kemudian dimaserasi kembali dengan etanol 96% dan dilakukan sebanyak 3 kali perendaman. Ekstrak yang diperoleh akan dipekatkan dengan *rotary vacuum evaporator* pada suhu 55°C. Setelah diperoleh ekstrak kental dibuat perhitungan persentase rendemen ekstrak dengan menggunakan rumus:

$\frac{bobot total \ ekstrak}{Berat \ bubuk \ simplisia \ total} \ \times 100\%$

Pembuatan ekstrak secara infusa dilakukan dengan cara memanaskan air kemudian masukkan simplisia kulit mangga 100 gram selama 15 menit pada suhu 90°C dengan sesekali dilakukan pengadukan. Disaring dan diperoleh ekstrak air kulit mangga yang diinginkan.

Pengujian antibakteri dilakukan dengan cara konfirmasi hasil dari masing – masing pengujian identifikasi bakteri melalui pewarnaan gram dan mengamati koloni bakteri yang tumbuh dan dapat dinyatakan sebagai koloni *P. aeruginosa* dan *P. acnes*. Kemudian masing-masing dari kultur disesuaikan kekeruhannya dengan standart *Mc. Farland* 0,5 dan diinokulasikan dalam media MHA (*Muller Hinton Agar*). *Cup-Plate* kemudian digunakan untuk membuat lubang sumuran (diameter ± 6mm) dan diisi ekstrak maserasi dan inf a kulit mangga masing – masing sebanyak 20 µ1 dengan konsentrasi 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% dan 100% pada media yang sudah diinokulasikan

kultur bakteri uji yang berbeda. Kemudian diinkunbasi selama 24 jam dengan suhu 37°C. Setelah 24 jam aktivitas antibakteri ditentukan melalui pengukuran zona hambat disekitar masing-masing ekstrak.

HASIL DAN PEMBAHASAN

Hasil ekstrak maserasi kulit mangga sebanyak 4,6 liter lalu dipekatkan dengan alat *rotary vacuum evaporator* pada suhu 55°C. Ekstrak pekat yang dihasilkan dari hasil pemekatan yaitu sebanyak 153 gram. Lalu ekstrak pekat yang didapatkan dihitung nilai % rendemennya, seperti yang terlihat pada Tabel 1. Berdasarkan Tabel 1, berat sampel mengalami penyusutan yang terjadi karena proses pengeringan yang menyebabkan kadar air menguap dan berkurang sehingga sampel terhindar dari pertumbuhan mikroba. Setelah kulit mangga menjadi serbuk maka proses selanjutnya akan dilakukan ekstraksi maserasi dan infusa untuk mengambil atau menarik senyawa metabolit sekunder yang ada pada kulit mangga.

Nilai % rendemen merupakan perbandingan antara bobot ekstrak pekat dengan bobot simplisia dengan menggunakan satuan persen (%). Semakin tinggi nilai rendemen maka semakin banyak pula ekstrak yang diperoleh. Ekstrak pekat yang diperoleh selanjutnya akan di uji fitokimia untuk mengetahui adanya senyawa metabolit sekunder yang terkandung pada ekstrak.

TABEL 1. Hasil Ekstrak Secara Infusa dan Maserasi

۰	DEE T. Flacin Enter an Octobra Innoca dari Macondo			
	Parameter	Hasil Maserasi	Hasil Infusa	
	4			
	Berat basah	2000 gram	130 gram	
	Berat kering	1100 gram	100 gram	
	Berat serbuk	700 gram		
	Ekstrak Pekat	153 gram	100 ml	
	Rendemen	21, 85%	100%	

Uji kualitatif fitokimia bertujuan untuk mengidentifikasi senyawa aktif atau senyawa mulibolit sekunder yang terkandung dalam sampel. Adapun syarat uji fitokimia yaitu menggunakan melule yang sederhana, memiliki waktu yang singkat dan tepat, menggunakan pereaksi yang sesuai dengan golongan senyawa yang diidentifikasi dan menggunakan alat yang sederhana. Berdasarkan hasil uji kualitatif fitokimia ekstrak secara infusa dan maserasi pada kulit mangga, senyawa metabolit sekunder yang terkandung pada ekstrak ditampilkan pada Tabel 2. Berdasarkan Tabel 2, hasil uji kualitatif fitokimia, ekstrak infusadan maserasi kulit mangga mengandung senyawa flavonoid, alkaloid, saponin, steroid, dan tanin. Sehingga pelarut etanol yang bersifat polar dapat menarik senyawa-senyawa semi polar ataupun polar. Lalu hasil senyawa tersebut perlu dilakukan uji antibakteri.

TABEL 2. Hasil Uji Kualitatif Fitokimia Ekstrak Infusa dan Maserasi Kulit Mangga (*Mangifera indica* L.)

Uji	Pereaksi	Pengamatan	Hasil (+) / (-)	
Fitokimia			Infusa	Maserasi
Alkaloid	Mayer	Endapan jingga	+	+
	Wagner	Endapan putih	-	+
	Dragend rof	Endapan hijau pekat	-	-
Flavonoid	Mg + HCI Pekat + Etanol	Warna merah	-	+
Saponin		Adanya busa stabil	+	+
Steroid	Lieberm ann- Burchar d	Ungu ke biru/hijau	+	-
Tanin	FeCl3 1%	Ungu kehitaman	+	+

Hasil uji aktivitas antibakteri ekstrak maserasi kulit mangga terhadap bakteri *Pseudomonas* geruginosa dan Propionibacterium acnes dengan varian konsentrasi 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% dan 100% ada pada Tabel 3. Data pada Tabel 3 menunjukkan hasil rata-rata diameter zona hambat tiap kelompok perlakuan bakteri P.acnes dan P. aeruginosa metode sumuran dengan pengulangan sebanyak tiga kali. Hasil daya hambat kelompok tersebut memiliki nilai diameter yang berbedabeda dan kekuatan antibakteri yang dimiliki berbeda pula. Ada yang kekuatan nya lemah karena rentang zona hambat berkisar (< 10 mm), sedang karena rentang zona hambat (10-20 mm) dan kuat karena memiliki rentang zona hambat (≥ 22 mm). Hal ini menunjukkan bahwa ekstrak maserasi kulit mangga varietas apel mengandung zat antibakteri berupa senyawa alkaloid, flavonoid, saponin dan tanin yang mampu menghambat pertumbuhan bakteri walaupun daya hambat nya lemah ataupun sedang yang memiliki sifat antibakteri.

TABEL 3. Hasil Diameter Zona Hambat Aktivitas Antibakteri Ekstrak Maserasi Kulit Mangga Terhadap *P. aeruginosa* dan *P. acnes*

waserasi Kulit Mangga Ternadap <i>P. aeruginosa</i> dan <i>P. acnes</i>				
Pelakuan	Propionibacterium	Pseudomonas		
	acnes	aeruginosa		
	$\bar{x} \pm SD$	$\bar{X} \pm SD$		
10%	$0 \pm 0,00$	0 ± 0.00		
20%	$3 \pm 0,00$	0 ± 0.00		
30%	5.3 ± 0.57	4 ± 0.00		
40%	$7 \pm 0,70$	$4,5 \pm 0,70$		
50%	7.8 ± 0.4	5,3 ± 1,82		
60%	8,6 ± 1,10	9,3 ± 1,11		
70%	$9,2 \pm 0,90$	10,3 ± 2,86		
80%	10.8 ± 0.75	11,3 ± 2,49		
90%	12 ± 0,76	15,5 ± 2,11		
100%	13,2 ± 1,00	17,9 ± 0,82		
Kontrol (-)	$0 \pm 0,00$	$0 \pm 0,00$		
Kontrol (+)	19,5 ± 1,70	24,1 ± 0,40		

Hasil uji aktivitas antibakteri ekstrak infusa kulit mangga terhadap bakteri *Pseudomonas a uginosa* dan *Propionibacterium acnes* dengan varian konsentrasi 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% dan 100% ada pada Tabel 4.

 TABEL 4. Diameter Zona Hambat Aktivitas Antibakteri Ekstrak Infusa

 Kulit Managa Terhadan Bakteri P. aeruginosa dan P. acnes

	ilit Mangga Terriadap Bakteri F. aeruginosa dari F. acries			
Pelakuan	Propionibacterium	Pseudomonas		
	acnes	aeruginosa		
	$\bar{x} \pm SD$	$\overline{x} \pm SD$		
10%	0 ± 0.00	0 ± 0.00		
20%	0 ± 0.00	0 ± 0.00		
30%	$0 \pm 0,00$	0 ± 0.00		
40%	$0 \pm 0,00$	$0 \pm 0,00$		
50%	$0 \pm 0,00$	$0 \pm 0,00$		
60%	$0 \pm 0,00$	$0 \pm 0,00$		
70%	$0 \pm 0,00$	$0 \pm 0,00$		
80%	$0 \pm 0,00$	$0 \pm 0,00$		
90%	$0 \pm 0,00$	$0 \pm 0,00$		
100%	$0 \pm 0,00$	$0 \pm 0,00$		
Kontrol (-)	$0 \pm 0,00$	$0 \pm 0,00$		
Kontrol (+)	19,5 ± 1,70	24,1 ± 0,40		

Pada Tabel 4 dapat dilihat bahwa tidak adanya aktivitas atibakteri pada konsentrasi 10% sampai 100% dengan tiga pengulangan 1telah diinkubasi selama 24 jam pada suhu 37°C, hal ini dapat dilihat dengan tidak terdapat zona bening disekitar sumuran. Seharusnya infusa kulit mangga memiliki aktivitas antibakteri. Hasil penelitian ini cukup berbeda jika dibandingkan dengan hasil penelitian yang dilakukan oleh Hussain (2018), yakni infusa kulit mangga hijau pada konsentrasi 50% menunjukkan efek tertinggi penghambatan terhadap bakteri gram negatif yaitu Pseudomonas aeruginosa. Tidak adanya aktivitas antibakteri dapat dipengaruhi oleh beberapa faktor, yaitu: (1). Faktor teknis yang dapat dikendalikan oleh peneliti yaitu besar inokulum, suhu dan lama inkubasi. Besar inokulum sudah disesuaikan dengan standart Mac. Farland. Suhu inkubasi yaitu 37 °C yang merupakan suhu optimum dalam pertumbuhan bakteri. Waktu inkubasi yang digunakan selama 24 jam yang merupakan lama waktu yang dibutuhkan bakteri berada pada fase logaritmik Sedangkan, Faktor biologis diduga dari faktor resistensi suatu bakton, berbagai jenis bakteri bisa saja mengalami resistensi yang merupakan adamasi bakteri untuk bertahan hidup Choffnes (2010). (2). Pemilihan metode ekstraksi juga mempengaruhi banyak sedikitnya senyawa metabolit sekunder yang didapat CLSI (2013). Pada penelitian ini diperoleh perbedaan kandungan senyawa antara infusa dan maserasi yang terdapat 11 da Tabel 2. diketahui tabel tersebut memberikan hasil bahwa metode ekstraksi secara maserasi memiliki kadar alkaloid yang lebih tinggi bila dibandingkan dengan ekstraksi dengan metode Perbedaan selanjutnya terdapat pada senyawa infusa. flavonoid dimana pada metode ekstraksi infusa tidak

memberikan adanya senyawa flavonoid. Hal tersebut

menunjukkan bahwa metode ekstraksi secara maserasi diduga mampu menarik senyawa secara kualitatif yang lebih banyak dibandingkan dengan ekstrak metode infusa sehingga berpengaruh terhadap aktivitas antibakteri pada larutan uji. (3). Faktor virulensi bakteri diduga berpengaruh terhadap hasil uji antibakteri infusa kulit manga varietas apel. Bakteri gram negatif yakni P. aeruginosa memiliki dinding sel yang lebih kompleks dibandingkan dengan bakteri gram positif. Perbedaan utamanya yaitu muharan luar yang memiliki lipopolisakarida yang berfugsi sebagai barrier masuknya zat antimikroba. Zat antimikroba yang masuk kedalam bakteri akan dikeluarkan melalui kerja pompa yang terdapat pada lipopolisakarida. Komponen penting pada pompa tersebut yaitu protein ArcA, tol C, dan ArcB Waluyo (2007) Sedangkan pada gram positif seperti bakteri P. acnes memiliki dinding sel dengan lapisan peptidoglikan yang tebal sehinga sruktur lebih kaku. Adanya peptidoglikan yang tebal tersebut memungkinkan zat antimikroba sulit menembus dinding sel tersebut.

KESIMPULAN

Berdasarkan penelitian yang dilakukan, dapat di simpulkan bahwa kulit mangga (*Mangifera indica* L.) varietas apel secara maserasi berpotensi dalam menghambat pertumbuhan bakteri *Propionibacterium acnes* dan *Pseudomonas aeruginosa*. Daya hambat yang terbentuk pada konsentrasi 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% dan 100% berturut-turut diperoleh hasil pada bakteri *P. acnes* yaitu 0 mm; 3 mm; 5,3 mm; 7 mm; 7,8 mm, 8,6 mm; 9,2 mm; 10,8 mm; 12 mm; dan 13,2 mm. Hasil daya hambat bakteri *P. aeruginosa* secara berturut- turut yaitu 0 mm; 0 mm; 4 mm; 4,5 mm; 5,3 mm; 9,3 mm; 10,3 mm; 11,3 mm; 15,5 mm dan 17,9 mm.

Kulit mangga (Mangifera indica L.) varietas apel secara infusa tidak berpotensi dalam menghambat pertumbuhan bakteri Propionibacterium acnes dan Pseudomonas aeruginosa

Potensi Kulit Mangga (Mangifera infica L.) Varietas Apel Secara Infusa Dan Maserasi Dalam Menghambat Bakteri Pseudomonas aeruginosa dan Propionibacterium acnes

ORIGINA	ALITY REPORT			
SIMILA	1 % ARITY INDEX	11% INTERNET SOURCES	2% PUBLICATIONS	O% STUDENT PAPERS
PRIMAR	Y SOURCES			
1	docoboc Internet Sourc			5%
2	id.123do Internet Sourc			2%
Romi Syawalludin. "KEMAMPUAN MADU HITAM DALAM MENGHAMBAT PERTUMBUHAN BAKTERI Pseudomonas aeruginosa", Jurnal Ilmu Kedokteran dan Kesehatan, 2019 Publication			nas	
4	e-journa Internet Sourc	l.unair.ac.id		2%

Exclude quotes On Exclude bibliography On

Exclude matches

< 2%